

Back Face Deformation (BFD) Response Comparison between KM2 and HB80 Flat Panels

Timothy Zhang¹, Sikhanda Satapathy², Lionel Vargas²

¹TKC Global Inc., Aberdeen Proving Ground, MD 21005, USA ²US Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA

29th International Symposium on Ballistics

May 9-13, 2016

- Background
- BFD experiments
- Numerical model
- Numerical results
- Summary

Ballistic protection material

- Kevlar
- Ultra-High-Molecular-Weight Polyethylene (UHMWPE)
- ❖ V₅₀ of UHMWPE is about 30% higher than Kevlar
- ❖ BFD is equally important as V₅₀

Numerical models for Kevlar

Delamination was not explicitly modeled

Setup

- Digital image correlation (DIC)
- Boundary conditions:
 - suspended by strings
 - four corners clamped
 - four edges clamped
- UHMWPE and Kevlar panels

Table: TEST DATA SUMMARY FOR UHMWPE AND KEVLAR

Test	Material	Boundary Conditions	Impact velocity (m/s)	Peak center BFD (mm)	Final BFD (mm)	Normalized DOP
458A-1	HB80, [0/90]	Corner	440.6	28.7	16.3	0.60
458A-2		clamped	424.1	27.3	12.7	0.50
869A-1		Free	422.1	26.6	11.7	0.53
869A-2			421.1	26.5	12.5	0.58
869A-3			307.2	18.1	8.13	0.19
869A-4			302.1	17.8	7.49	0.24
546A		Edges clamped	294.1	16.1	7.7	0.26
545A		Free	292.6	16.3	7.2	0.24
868A-1	K705, woven	Free	431.9	NA (perfora	ted)	1
868A-2			303.4	16.6*	6.2	0.50
868A-3			297.8	15.3*	5.1	0.53
868A-4			301.1	15.5*	5.3	0.49
360B		Edge clamped	232.6	12.1	1.9	0
359B		Free	228.9	12.4	1.6	0

- For both Material, as the velocity drops the peak center BFD, final BFD and DOP decrease.
- The UHMWPE panels have better ballistic resistance performance.
- The peak BFD and residual BFD are lower in Kevlar panels.

Medium impact speed

Kevlar UHMWPE

868A-1

868A-3

868A-4

458A-1

869A-2

545A

Quij) X (inch) 2 4 6

Test 868A-3

Test 360B

Test 359B

[0/90] HB80

Test 458A-1

Test 869A-2

Test 869A-4

- Similar delamination and BFD response
- Same material model with different material parameters
- A model developed/characterized for UHMWPE was used
 - "fused" layers
 - Two elements per layer
 - Two-zone strategy

Numerical results - UHMWPE

Table. Comparison between model and tests.

Test	Impact Speed (m/s)	ı	Peak BFD (n	Normalized DOP		
		Model	Test	Difference	Model	Test
458A-1	440.6	27.2	28.6	5.2%	0.55	0.60
458A-2	424.1	25.5	27.3	6.7%	0.50	0.50
545A	292.6	16.9	16.3	3.6%	0.25	0.24

Numerical results - Kevlar

- Material parameters need to be characterized
- Material parameters from literature were used here

Material parameters, from :Y. Q. Li, X. G. Li and X.-L. Gao, Modeling of Advanced Combat Helmet Under Ballistic Impact, J. Appl. Mech 82(11), 111004 (Aug 12, 2015).

Density

Young's Modulus

Poisson's ratio

Shear Modulus

Tensile strength

Compression strength

Normal strength

Fiber crush strength

Fiber shear strength

Matrix shear strength

Delamination coefficient

Coulomb friction coefficient

Strain rate coefficient

Scale factor for residual compressive strength

Element eroding axial strain

Limit damage parameter for elastic modulus reduction

Limit compressive relative volume for element eroding

Limit expansive relative volume for element eroding

Coefficient for strain softening property

 $\rho = 1230 \text{ Kg/m}^3$

 $E_a=E_b=22GPa$, $E_c=9GPa$

 $v_{ab} = 0.25$, $v_{ac} = v_{bc} = 0.33$

 G_{ab} =0.77GPa, G_{bc} =Gca=2.715GPa

 $S_{aT} = S_{bT} = 800MPa$

 $S_{aC} = 60MPa$

 $S_{cT} = 34.5 MPa$

 $S_{FC} = 1200MPa$

 $S_{ES} = 1086MPa$

 $S_{ab} = 77MPa, S_{bc} = S_{ca} = 898MPa$

1.2

 10°

 $C_{rate1} = 0.0257, C_{rate2.3} = 0.0246, C_{rate4} = 0$

 $S_{FFC}=0.3$

E LIMT=4.5%

 $\omega_{\text{max}} = 0.9975$

ECRSH=0.001

EEXPN=5.0

 $m_1=m_2=0.5, m_3=0.1, m_4=20$

Penetration process

 $30 \, \mu s$

50 μs 100 μs

Implicit delamination model

Explicit delamination model

Time history of projectile kinetic energy and BFD ARL

Summary and discussion

- Back face deformation experiments were conducted for both KM2 and HB80 flat panels
 - > the BFD was lower and the DOP was larger in the Kevlar panels
 - ➤ The BFD contours were very similar for Kevlar and UHMWPE panels and were diamond-shaped
 - Delamination along with fiber breakages were two main failure modes for both Keylar and UHMWPE
- A model previously characterized for UHMWPE was used to model the BFD response of both UHMWPE and KM2 panels.
 - Model predictions agreed well with the experimental data for UHMWPE.
 - However, the model predicted lower BFD compared to the experimental data for KM2, while BFD profiles were similar.
 - The material parameters for KM2 need to be obtained by conducting material tests or characterized by the BFD test data.
 - Delamination failure needs to be explicitly modeled

Thank you!